Author(s):
Gian. C. Rana, Sanjay K. Kango, Poonam K. Gautam
Email(s):
Email ID Not Available
DOI:
10.52711/2321-581X.2022.00011
Address:
Gian. C. Rana1, Sanjay K. Kango1, Poonam K. Gautam2
1Department of Mathematics, NSCBM Government College, Hamirpur-177 005, Himachal Pradesh, India.
2School of Basic Sciences (Mathematics), Bahra University, Waknaghat -173 234, Himachal Pradesh, India.
*Corresponding Author
Published In:
Volume - 13,
Issue - 3,
Year - 2022
ABSTRACT:
In this study, the influence of suspended particles on thermal convection in a porous layer saturating a Jeffrey fluid is examined. Linear stability theory based on normal modes is employed to derive a mathematical theorem on thermal convection in a porous layer saturating a Jeffrey fluid which states that the viscoelastic thermal convection at marginal state cannot manifest as stationary convection if the thermal Rayleigh number R, the medium permeability parameter Pl, the Jeffrey parameter ?_3 and suspended particles parameter B, satisfy the inequality
Cite this article:
Gian. C. Rana, Sanjay K. Kango, Poonam K. Gautam. Effect of suspended particles in a porous medium layer heated from below saturating a Jeffrey fluid: A Mathematical Theorem. Research Journal of Engineering and Technology. 2022; 13(3):80-5. doi: 10.52711/2321-581X.2022.00011
Cite(Electronic):
Gian. C. Rana, Sanjay K. Kango, Poonam K. Gautam. Effect of suspended particles in a porous medium layer heated from below saturating a Jeffrey fluid: A Mathematical Theorem. Research Journal of Engineering and Technology. 2022; 13(3):80-5. doi: 10.52711/2321-581X.2022.00011 Available on: https://www.ijersonline.org/AbstractView.aspx?PID=2022-13-3-3
REFERENCES:
1. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Dover Publication, New York, (1981).
2. Lapwood, E.R., Convection of a fluid in porous medium, Proc. Camb. Phil. Soc. 44 (1948) 508-519.
3. Wooding, R.A., Rayleigh instability of a thermal boundary layer in flow through a porous medium, J. Fluid Mech. 9 (1960) 183-192.
4. Scanlon, J.W., Segel, L.A., Effect of suspended particles on the onset of Be′nard convection, Physics Fluids 16 (1973) 1573-78.
5. Jeffrey, H., The stability of a layer of fluid heated below, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2 (1926) 833-844.
6. Nallapu, S. Radhakrishnamacharya, G., A.J. Chamkha, Flow of a Jeffrey fluid through a porous medium in narrow tubes, J. of Porous Media 18 (2015) 71–78.
7. Sushma, K., Sreenadh, S., Dhanalakshmi, P., Mixed convection flow of a Jeffrey nanofluid in a vertical channel, Middle-East Journal of Scientific Research 25 (2017) 950-959.
8. Imran, M.A., Miraj, F., Khana, I., Tlili, I., MHD fractional Jeffrey’s fluid flow in the presence of thermo diffusion, thermal radiation effects with first order chemical reaction and uniform heat flux, Results in Physics 10 (2018) 10–17.
9. Rana, G.C., Gautam, P.K., On the onset of thermal instability of a porous medium layer saturating a Jeffrey nanofluid, Engineering Transactions 70 (2022) 123-139.
10. G.C. Rana, P.K. Gautam, V. Sharma, Stability analysis of a non-newtonian nanofluid layer: Jeffrey model, J. Theoretical and Applied Mechanics (2022) Accepted
11. Ingham, D., Pop, I., Transport Phenomena in Porous Media- Elsevier, New York, (1981).
12. Nield, D.A., Bejan, A., Convection in Porous Medium- Springer, New York, 2006.
13. Vafai, K., Hadim, H.A., Hand Book of Porous Media- M. Decker, New York, 2000.
14. Rana, G.C., Kumar, S., Thermal instability of Rivlin-Ericksen elastico-viscous rotating fluid permeated with suspended particles and variable gravity field in porous medium, Studia Geotechnica et Mechanica XXXII (2010) 39-54.
15. Rana, G.C., Thakur, R.C., A mathematical theorem on the onset of Couple-Stress fluid permeated with suspended particles saturating a porous medium, Int. J. of Multiphysics 6 (2012) 61-72.