Author(s):
Arpit Kaistha, V.S. Rangra
Email(s):
arpitkaisth@gmail.com
DOI:
10.52711/2321-581X.2022.00018
Address:
Arpit Kaistha1*, V.S. Rangra2
1Department of Physics, KDC GDC Jaisinghpur 176095, India.
2Department of Physics, Himachal Pradesh University, Summerhill, Shimla 171005, India.
Corresponding Author
Published In:
Volume - 13,
Issue - 4,
Year - 2022
ABSTRACT:
The quaternary antimony substituted Ge-Se-Te glasses have been synthesized using melt quench technique. The ac conductivity and dielectric properties viz. dielectric constant and dielectric loss of pallets has been studied in the frequency range (500Hz-1MHz) from room temperature to 365K. Both ac conductivity and dielectric properties are found to have dependence on frequency and temperature. The ac conductivity is found to obey the power law ?s, where s approaches unity at room temperature and decreases with increase in temperature. The temperature dependence of ac conductivity has been explained on the basis of relaxation caused by the motion of electrons or atoms and the correlated barrier hopping (CBH) model. The dielectric constant and dielectric loss are found to increase with temperature and decrease with the frequency. The variation of the studied properties with Sb content has also been investigated for all the compositions.
Cite this article:
Arpit Kaistha, V.S. Rangra. Conduction and Dielectric Behaviors of Ge16Se52Te32-xSbx(x = 0,2,4,6,8) glassy system. Research Journal of Engineering and Technology. 2022; 13(4):117-8. doi: 10.52711/2321-581X.2022.00018
Cite(Electronic):
Arpit Kaistha, V.S. Rangra. Conduction and Dielectric Behaviors of Ge16Se52Te32-xSbx(x = 0,2,4,6,8) glassy system. Research Journal of Engineering and Technology. 2022; 13(4):117-8. doi: 10.52711/2321-581X.2022.00018 Available on: https://www.ijersonline.org/AbstractView.aspx?PID=2022-13-4-5
REFERENCES
[1] Amrita Prasad, Cong Ji Zha, Rong Ping Wang, Anita Smith, Steve Madden and Barry Luther-Davies, optics express 16, 2804 (2008).
[2] G. Chen, F. Inam, D.A. Drabold, Appl. Phys. Lett. 97, 131901 (2010).
[3] E.R. Shaaban, M.T. Dessouky, A.M. Abousehly, J. Phys. Condens. Matter 19, 096212 (2007).
[4] F.A. Lopez, M.C. Ramirez, J.A. Pons, A. Lopez-Delgado, F.J. Alguacil, J. Therm. Anal. calorim. 94, 517 (2008).
[5] Vivek Modgil, V. S. Rangra, Physica B 445, 14 (2014).
[6] D.E. Carlson, C.R. Wronski, Amorphous silicon solar cell, App. Phys. Lett. 28, 671 (1976).
[7] T. Ohta, J. Optoelectron. Adv. Mater. 3, 609 (2001).
[8] N. Sharma, S.Sharda, V . Sharma, P. Sharma, Defect and Diffusion Forum 45, 316 (2011).
[9] J.S. Sanghera, I.D.Aggarwal, J. Non Cryst. Solids 256, 616 (1999).
[10] B.T Kolomieto, Phys. Status Solidi 7, 713–731(1964).
[11] N. Sharma, S. Sharda, V. Sharma, P. Sharma, Chalcogenide Letters 9, 355 – 363 (2012).
[12] A. A. Wilhelm, C. Boussard Pl´edel, Q. Coulombier, J. Lucas, B. Bureau, P. Lucas, Adv Mater . 19, 3796 (2007).
[13] A.V. Kolobov, P Fons, A. I Frenkel,. A.L.Ankudinov, J Tominaga, T Uruga, Nature Mater.3,703,(2004).
[14 ] H. Ghamlouche, S.T. Mahmoud, N. Qamhieh, J. Phys. D: Appl. Phys. 41, 215303 (2008).
[15] Mousa M A Imran, Phys. B 406, 4289 (2011).
[16] A.A. El-Sebaii, A. Khan Shamshad, F.M. Al-Marzouki, A.S. Faidah, A.A. Al- Ghamdi, J. Lumin. 132, 2082 (2012).
[17] I.S. Yahia, N.A. Hegab, A.M. Shakra, A.M. AL-Ribaty, Phys. B 407, 2476 (2012).
[18] D. Adler, M.S. Shur, M. Silver, S.R. Ovshinsky, J. Appl. Phys. 51, 3289 (1980).
[19] V. Modgil, V.S. Rangra, J. Mater Sci: Mater Electron 25, 5428-5432 (2014).
[20] E.A. Davis, N.F. Mott, Phil. Mag. 22, 903 (1970).
[21] M. Pollak, Phil. mag. 23, 519 (1971).
[22] N. F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials, Claredon, Oxford, (1979)
[23] R.M.Hill, A.K.Jonscher, J. Non-Cryst. Solids 32, 53-69 (1979).
[24] A.R. Long, Adv. Phys. 31, 553-637 (1982).
[25] S.R. Elliott, Philos. Mag. B 36, 1291(1977).
[26] S.R. Elliott, Adv. Phys. 36, 135 (1987).
[27] J.C. Guintini, J.V. Zanchetta, D. Jullen, R. Eholle, P. Hoenou, J. Non Cryst. Solids 45, 57 (1981).
[28] K. Shimakawa, Philos. Mag. B 46, 123 (1982).
[29] K. Hulls, P.W. Mcmillan, J. Phys. D: Appl. Phys. 5, 865 (1972).
[30] W.K. Lee, J.F. Liu, A.S. Nowick, Phys. Rev. Lett. 67, 1559 (1991).
[31] M. Pollak, G.E. Pike, Phys. Rev. Lett. 28, 1449 (1972).
[32] M. Pollak, T.H. Geballe, Phys.Rev. 22, 1742 (1961).
[33] N.A.Hegab,M.A.Afifi, H.E.Atyia,M.I.Ismael,ActaPhys.Polon.A 119, 416 (2011).
[34] A.Sharma,N.Mehta,A.Kumar,J.Mater.Sci. 46, 4509 (2011).
[35] N. Chandel,N.Mehta,A.Kumar,Curr.Appl.Phys. 12, 405 (2012).
[36] N.A.Hegab,H.M.El-Mallah,ActaPhys.Polon.A 116 (2009) .
[37] L. Pauling: Die Natur der Chemischen Binding, VCH Weinheim, (1976).
[38] M.K. Rabinal, N. Ramesh Rao, K.S. Sangunni, Phil. Mag. 70, 89 (1994).
[39] M.A. Majeed Khan, M. Zulfequar, M. Hussain, J. Mater. Sci. 38, 549 (2003).
[40] V.K. Saraswat, V. Kishore, N.S. Saxena, T.P. Sharma, Indian Journal of Pure and Applied Physics 44, 196 (2006).
[41] V.K. Saraswat, K. Singh, N.S. Saxena, V. Kishore, T.P. Sharma, P.K. Saraswat Current Applied Physics 6, 14 (2006).
[42] J.C. Giuntini, J.V. Zancheha, J. Non Cryst. Solids 34, 419 (1979).
[43] S.R. Elliott, Solid State Commun. 27, 749 (1978).
[44] J.M. Stevels, Handbuch der Physik, in: Flugge (Ed.), Springer, Berlin, 350 (1975).
[45] D.K. Goel, C.P. Singh, R.K. Shukla, A. Kumar, J. Mater. Sci. 35, 1017 (2000).